![]() | Q63 | If abc=1, prove that 1/(1+a+b^(-1))+1/(1+b+c^(-1))+1/(1+c+a^(-1))=1 Süre: 4:57 | Boyut: 11.33 MB |
![]() | if a b c are in hp show that '(a-b)/(b-c)=a/c' || if a b c are in hp show that a-b/b-c=a/c || Süre: 4:22 | Boyut: 9.99 MB |
![]() | Q62 | Prove that 1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1 Süre: 7:52 | Boyut: 18.01 MB |
![]() | Prove that (A-C)U(B-C) = (AUB)-C where A, B, C are subsets of a universal set S Problem on Sets Süre: 6:11 | Boyut: 14.15 MB |
![]() | If a^2 , b^2 , c^2 are in A.P. then prove that a/(b+c) , b/(c+a) , c/(a+b) are in A.P. Süre: 6:16 | Boyut: 14.34 MB |
![]() | Cartesian product of sets - Some theorems with proofs - Sets - part 16 - Set theory Süre: 8:48 | Boyut: 20.14 MB |
![]() | If `a, b, c` are in A.P, then show that: `b+c-a ,\\ c+a-b ,\\ a+b-c` are in A.P. Süre: 3:08 | Boyut: 7.17 MB |
![]() | Show that there is no positive integer n for which root (n-1)+ root (n+1) is rational. Tutor DM Süre: 10:26 | Boyut: 23.88 MB |
![]() | If a+b+c =0, Prove that1/1+x^a+x^-b+1/1+x^b+x^-c+1/1+x^c+x^-a=1 || Indices class 9 simplify Süre: 8:01 | Boyut: 18.35 MB |
![]() | If abc=1,show that 1/1+a+b−1+1/1+b+c−1+1/1+c+a−1=1|laws of exponent | class 9 | Süre: 5:30 | Boyut: 12.59 MB |
![]() | \"If `a b c=1,`show that`1/(1+a+b^(-1))+1/(1+b+c^(-1))+1/(1+c+a^(-1))=1`\" Süre: 2:44 | Boyut: 6.26 MB |
![]() | Prove that (A-B)×C = (A×C)-(B×C) where A,B,C are subsets of a universal set S Problems on Sets Süre: 7:21 | Boyut: 16.82 MB |
![]() | If (b+c-a)/a, (c+a-b)/b, (a+b-c)/c are in AP Prove that 1/a, 1/b, 1/c are AP |Arithmetic Progression Süre: 5:26 | Boyut: 12.44 MB |
![]() | If a,b,c are in AP. Show thata(b+c)/bc, b(c+a)/ca, c(a+b)/ab are in AP | Arithmetic Progression Süre: 5:02 | Boyut: 11.52 MB |
![]() | Prove that A minus (B intersection C) = (A - B) U (A U C) and A-(B U C )= (A-B) intersection (A-C). Süre: 3:20 | Boyut: 7.63 MB |
![]() | Let a, b, c, d be positive rationals such that a+√𝑏 = c+ √𝑑, then either a = c, b= d or b and d are Süre: 6:52 | Boyut: 15.72 MB |
![]() | prove that [a+b,b+c,c+a]=2[abc] where a,b&c are three vectors || mathematical physics||uv duduli Süre: 3:00 | Boyut: 6.87 MB |
![]() | If vector (a + b + c) = 0 , prove that vector (a x b) = vector (b x c) = vector (c x a). Vector 12th Süre: 2:22 | Boyut: 5.42 MB |